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Controlling chaos in a weakly coupled array of Bose-Einstein condensates
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The spatial structure of a Bose-Einstein condensate loaded into an optical lattice potential is investigated and
the spatially chaotic distributions of the condensates are revealed under the tight-binding approximation.
Adding a laser pulse on a proper site of the lattice and treating it as a control signal, control of the chaos in the
system is carried out by using the Ott-Grebogi-Yorker scheme. For an appropriate laser pulse, we can suppress
the chaos and push the system onto a stable manifold of a target orbit. After the control, a regular distribution,
which may be expected in experiments or practical applications, of the condensates in the coordinate space is

obtained.
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[. INTRODUCTION stabilizing the unstable target orbits embedded within a cha-
) ) ) otic attractor.
Creation of the Bose-Einstein condensg@&C) has pro- In previous work we have investigated some chaotic char-

vided a platform for investigating many important phenom-5cteristics in the BEC systems with a double-well potential
ena in atomic physics, condensed-matter physics, and quag g or a periodic ong10]. In the present paper, we consider
tum optics for the reason that this macroscopic quantuny Bec array loaded into a periodically optical lattice poten-
system consisting of ultracold atoms is unique in precisionja| | the framework of the tight-binding approximation, we
and flexibility for experimental control and manipulation inyestigate the spatial structure of the condensates in the sta-
[1-5]. The dynamics of the system is described by &;onary state and find the chaotic features in the spatial dis-
Schrédinger equation combining with a nonlinear term,ipytions of the condensates. The presence of chaos will lead
which represents the many-body interactions, in the meany, 5 randomness in the spatial structure of the BEC and even
field approximation. This nonlinearity makes it possible to g collapse of the matter wave. In order to control the chaos,
bring chaos into the quantum system. The existence of BEGye aqd a laser pulse, which can be expressed in the form of
chaos has been proved and the chaotic properties have algos fynction potential and treated as a control signal, on an
been extensively researched in many previous wikd4.  5ppropriate site of the optical lattice. Following the OGY
Naturally, chaos, which plays a destructive role in the r€gUmethod, if the control term is appropriateith a certain
larity of the system, will cause an instability of the Conde”'strength or at a proper positipwe can force the system to
sate wave functiofil5]. The onset of the instability can lead e stable manifold near an unstable periodic orbit. Conse-
to rapid proliferz?\tion of the thermal particles thaf[ has bee'huently, a desired regular distribution of the BEC array can
observed experimentallj16]. Chaos in a collapsing BEC pe achieved from the site where the control laser is added on.

has also been discussed by Filboal. [6] and Satio and This paper is organized as follows: spatially chaotic dis-
Ueda[17]. Meanwhile, chaos is relevant to the phenomenonyiytions of the stationary-state BECs are described in Sec.
of macroscopic quantum self-trapping in BE(12] and as- || |5 Sec. III, the control of chaos is studied by using the

sists the instanton tunneling in the one-dimensional perpgy feedback control method. Finally, a summary is given
turbed periodic potentigl18]. Therefore, it is important t0 i, sec. |v.

investigate the chaotic characteristics in the BEC system. For

the purpose of applications control of chaos is anticipated in|; ~yao0TIC DISTRIBUTIONS OF THE CONDENSATES

practical investigations. ' - IN OPTICAL LATTICES
Chaos control has always been a widely attractive field in

recent decades since the pioneering work of Ott, Grebogi, For an ultracold vapor of bosonic atoms trapped in a mag-
and Yorker(OGY) in 1990[19]. After the well-known OGY  netic well, pure condensates will be created when they are
method, some methods such as the numerous simplificationspoled to a temperature below the BEC threshold. After the
variations, and extensions have appeared and many effortseation, the BEC is loaded into a one-dimensiai#l) op-
have been put into controlling cha¢d0-24. Overwhelm- tical lattice potential which can be realized experimentally
ingly, these can be separated into two categories: feedbadly a far-detuned, retroreflected laser be@®,26. The cor-
control (active control and nonfeedbackpassivé control.  responding BEC dynamics is described by a time-dependent
The general method for feedback control is to push a syster@ross-Pitaevskii equatiofGPE) in the mean-field theory:

state onto a stable manifold of a target orbit—that is to say, .

) h?
== VA VetV + gV, (D)

*Corresponding author. wherem is the atomic mass ang,=4w7%%a/m denotes the
Electronic address: adcve@public.cs.hn.cn atom-atom interaction witta being thes-wave scattering
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length. The case>0 represents a repulsive interatomic in- de\/eXgI)ﬁ:nén,ny, because of the normalization condition
teraction, anda<<0 implies the attractive case. The order [di®,® = &, S0 the tunneling ratK is indeed a constant
parameterd is normalized to the total number of the con- for the periodic spatial distributio®,(r) and the on-site en-
densate atoms\l, V|, =V, cosi(kx) is the optical lattice po- ergy e, consists of two terms: thgs, ,» and a constant. After
tential, andV,, denotes an external field superimposed onabsorbing the constant into the chemical poter(gad., the
the lattice. When the heights of the interwell barriers of thelatter E), the on-site energy read28,31 €,= 7, With »
optical lattice potential are much higher than the chemicat>0(7<0) corresponding to the repulsivattractivg cases
potential of the system, the tight-binding approximation is aandn’ being the given lattice site on which the laser beam
valid technique to account for the characters involved in theycts.
GPE[26-29. The DNLSE (3) has been studied extensively
In the framework of the tight-binding approximation, the [26—29,32-37, although its dynamical behaviors are very
optical lattices split the BEC into an array of many small complicated. For simplicity, we shall consider the case that
BECs such that one can decompose the order parametgfe system is in the stationary state such that the amplitude
W(r,t) as a sum of wave functions localized in each well of y, at the nth lattice site can be written af33,39 ,

the optical lattice potential: =xn exd —iEt/4] with E being an arbitrary constant ang a
R — complex function ofn. Substituting suchy, into Eq. (2),
W(F,1) = VN2 ()P, (2)  parentally,¥(r,t) takes the form of the stationary solution,
n

where E represents the chemical potential gpdis the di-

where dimensionless functio(t) is thenth amplitude and mensionless expansion (_:oefficie_nt _associa_ted with the pasic
®,(7) denotes the wave function localized in tht lattice ~ VECtor ®q(f). For such time-periodic solutions the spatial
site, which weakly overlapped in the barrier region with theProperties of the system can be easily studied, becayfse
wave function®,.(f) in the neighbor sites. Inserting EQ) characterizes the f_ractlonal popu_latﬂt«l;]/NT w_|th N, being

into the GPE yields the discrete nonlinear Schrodinger equg'® NUmber of particles at tivgh site. Employing the above

tion (DNLSE) [26—2q orm of 1758 Eq (3) becomes
i, 2 Exn=~K(Xns1+ xn-1) + (& + U|Xn|2)Xn (4)
Iﬁ?:_K(lﬂ“"“ Yres) + (&n+ Ul (3) immediately. Rewriting the complex function in the expo-

R R nential form y,=1, exdi#,] and inserting it into Eq(4) we
Here  [26], K=-[diT(#%/2m)(VD,-VD,,)+D,(Ve, Obtain the coupled equations for the fractional population
+V|)®,.,] is proportional to the microscopic tunneling rate amplitudel, of the BEC at thenth site and the corresponding
between the adjacent sites adé:goN; [ dr®? indicates the ~phase anglé, as
strength of the atom-atom interaction. In an experinméis

controlled by the strength of the optical potential ddds Ely €086y = = Kllne1 COSOnes +In-161-1)

adjusted by using the technique of Feshbach resonance, re- +(ep+ U|ﬁ)|ncosem (5)
spectively. Meanwhile, the energy functional given by

= [ (h2/2m) (VD) 2+ (Vg V) P] has a different form for El, sin 6,= = K(I 41 SiN Gaq + 111 SIN 6,1
different external fieldd/,,, Note that the periodicity of the 2 .

lattice leads the profile ob,, to the same one in any lattice + (€ + UIYI, Sin O, (6)

site and, due tq the tight binding, tli, is localized in the  After some simple calculations Eq&) and(6) are changed
nth well approximately. Therefore, the strength of the two-,

body interactionU is a constant which is independent rof

On the other hand, the tunneling rd€ealso was treated as a 1 2

constant approximately in Reff26], because of the high lo- Ine1 COSAbnyq) + 151 COLAG,) = E(En +UI =B, (7)
calizations of the tight-binding states. However, the on-site

energye, should be a function af, sinceV,,;depends on the . .

spatial coordinates labeled loyand there is no overlap inte- In+1 SIN(AGhiq) = 11— SIN(AG,), (8)
gral is involved in the expression of the on-site energy. FOkyith Ag,=g,- 6,_,. From Eq.(8) we observe that it defines a
instance, it is proportional to? for a harmonic confinement spatial evolution constant by

potential superimposed on the lattice potential in the experi-

ment [26]. In Ref. [25], a coherent output of the matter J=1,l-1Sin(A6,), 9

waves was created by a vertical optical lattice which pro- = .
vides e. o n due to the éravity gradieﬁt P which is determined by the boundary valugs 6, and near
n .

In the present work, the external potential is taken as th&oundary values,, 6, of the system. Following the studies
form of a delta functionV= 73(x-x,) with 7 being the M [39], introducing two newly dimensionless variables

potential strength anxl,, a fixed lattice site. As an “artificial” W, =12, p.=Jcot(Af,) (10)
single impurity, such delta-function potential has been real- nomo o v

ized by a sharply focused laser beam in the experirf@djit and combining Eqgs(7) with (9), we can yield a reduced
In this case, we obtain the integratiofdr® Ve, @,.,=0 and  two-dimensional map as
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1
— 2
W1 = W (vn+1 + ‘]2)'
n

1
Un+1:_vn+E(€n+UWn_E)Wn- (11

From the definitions of the new variables, we fiwg is just 0 0102030405060 7
the fractional population at thath site. Wheng,=0, the map W
(11) has been researched by Wan and SoukdG for the o _ _
electronic response in a nonlinear lattice where the SUbindi-arlizk()Blé slw PzJOtTOhfetZ?)tfehdaiir(\)/;b:sc cm;?striizpi?tt;(; (;'g‘i?si';”:%fs
;ﬁiﬂ'ﬁ gﬁgriisd?:;tézehte'?f series contrasting with the Spat'azlwl,ul):(o._1+0.005,_—o.1+0.005), i=1,2,...,20. Theinvariant
From the map(11) we can observe that when the inter- _curves, period-5 orbit, gnd_ the chaotic orbits surroundeq them are
S - . . illustrated. The two solid lines represent the symmetry lines from
atomic interaction strengthl is large enough the nonlinear the equationsw=1p2+J2 and v=Uw?/2K—Ew/2K, respectively
effect will become dominant and the corresponding chaoti hich give a fixed point as their cross point. ' '
phenomenon will emerge. Consequently, the population o
the BEC array becomes random in the spatial distribution. L ) ) ) )
Furthermore, we can change the tunneling tatey adjust- per!od—5 elliptic or hyperbolic orbit; the su'rroundlng_ chaotlc
ing the height of the lattice and can control the two-body©rPits are also demonstrated. When the interatomic interac-
interaction intensityU by using Feshbach resonance in ex.tion is attragtlve(U<0), a similar dlagram for the orbits can
periments. For certain boundary valued g, and the near- also be achieved. Thereby, for certain system parameters and

boundary values,, 6,, the spatial evolution constadtand Poundary conditions, the BEC system possesses a spatially
the near-boundary values,, v, can also be determined as chaotic distribution. This chaotic characteristic results in the

J=14l,Sin(6,— ), W1:|§, and v,=Jcot(6,-6). Thus, stochasticity in the spatial structure of the BEC and des_troys
the regularity of the system. However, the stable periodic
states are expected generally in experiments and practical
plications. Due to the difficulty in precisely determining
the boundary conditions of the BEC in experiments, we can-
not acquire the desired periodic orbit through selecting the

populationaw, andw, for n=2,3, ... can belerived from Eq. boundary conditions. So it is necessary to control the system

(11). Consequently, the fractional populations of the BEC onffom the chaotic state to the regular target state by using an
every sites are acquired. According to these values of thEffective control method. In the next section, we shall try to
fractional populatiomw,, we can directly gain insight into the CaTy out this control.

spatial structure of the condensates in the optical lattices.

Many interesting properties of the electrons in the nonlinear [ll. CONTROLLING CHAOS IN THE SYSTEM

lattice have been studied through the ngap) with €,=0 in : .
Ref.[32]. Certainly, there have similar properties for the con- " thé above discussion, the laser pulse has not been

sidered BEC system described by the maf). Here, we considered—i.e.g,=0. _Obviously, in or_dgr to C(_)ntrol the
shall pay attention to the chaotic features implied in thisc"20S. some control signal should be injected into the sys-

L ; e tem. We shall take the laser pulse into account and find that
map, which is correlated to the spatially chaotic distributions, i
b P Y t can be treated as the control signal for the BEC system.

of the BEC. The orbits generated by the mapping on the" ~ thi ¢ v i ted field and selecting th

plane(w,v) can be either bounded or divergent for different tSIang i |sdex ernally gnfors_ ;eth and se eclllng tﬁ un-
parameter sets. The bounded orbits can further organize in a(’rige? slit(aete ps\;g(Zﬁgﬁ (-:or?t:o:) '?he shr:(?é)pt;;qsta)bﬁisz inge the
a hierarchy orbits with different period due to the generalsystem to the stable manifold of the objective state in the

theorem of Poincaré and Birkhoff and the KAM theorem .
_ . , : : scheme of the OGY feedback control method. Following the
[40]. Then, it is possible to find the chaotic trajectory nearOGY method[19,47 and starting from the mappingll)

the hierarchy poin{32]. . o - . . ;
Taking a set of system parameters as the tunneling rat‘é’Ith Whe1 =Wp AN Upey =y, We Can _Obta'”,—tge f|2xed points
governed by the coupled equations=\v°+J° and v

K=0.5, atom-atom interaction strendth=0.9, chemical po- 2" “, "~ = .
tential E=0.8 [they are all in unit of atomic recoil energy =Uw?/2K~Ew/2K. After eliminating the coupling they read

E,=#%°k?/(2m)], and spatial evolution constadt0.05 asso-

ciated with a certain boundary conditions and supposing the AW = 2aBWE + (B2 - DwE + 12 =0,
laser pulse is turn offi.e., €,=0), we plot 20 orbits in the
plane of dimensionless quantitiés,v) from mapping(11) 2. 2 2 o _
with different initial iterations of (w;,v;)=(0.1+0.0085, a(vE +J9) = Bvg +I°-0e =0, (12
-0.1+0.009), wherei takes integer numbers from 1 to 20 with «=U/2K and B=E/2K. We suppose that one of the
and shown as in Fig. 1. In this figure, it is seen that aroundixed points(wg,vg) is a saddle point, which is embedded
the fixed point there exist some invariant cury88] and a  within a chaotic state that the system lies in. Our task is to

given the tunneling rat&, nonlinear interaction strengt,
chemical potentiak, energy functional, (which is deter-
mined by the externally added laser pulse and denotes t
control signal in the next sectipnevolution constand, and
near-boundary valuesv;, v4, a series of BEC fractional

016202-3



CHONG, HAI, AND XIE PHYSICAL REVIEW E 71, 016202(2005

stabilize the system to the stable manifold through the saddle 1
point. Defining a transpose af, asxl=[wn v,] and consid- 0.5 e
ering the dynamics nearby the point, we hat6,41] ' ’/
AXper =F,AX,,  AXy =X, = X, (13 ° \ "
with i I
9 o \} ]
Xg = [WF } : T
Vg -1.5 .
Here,f, is a 2X 2 Jacobian matrix of the magl), which ) —
determines the motive flow of the system at this fixed point 0 020406 0'8W1 121416 18
and is given as
FIG. 2. Plot of the chaotic attractor from the méll) in the
f= i plane of dimensionless quantitids/,v) with «=-0.524 055, 3
x Xn | x = =0.1, andJ?=0.25. The target orbit of the unstable fixed point
noE (We,vp)=(1.62,-1.53 is involved in it.
B {(awp—ﬁ)(ZawF—ﬁH 1 —(aWF—B)] 14
ZC(WF - B -1 ' T_ _ ()\u + 1)—1
where f denotes the mapping. When the control signal is LI+ DT =+ DT
turned on, a shift to the unstable fixed point will be induced 1
and is characterized by a linear response matripdap X — — . (19
(2awe - B)[(As+ 1) - (A\g+1) 1]
_ 1/(2awg - B) . e
g= (1 -f )7 |, =xg= , (15) Supposing the spatial distributions of the condensates are
mn 1 chaotic when the control laser is turned off and the corre-
with spondingly chaotic attractor of the mafpl) involves the
unstable period-1 orbit. Meanwhile, on th&)th site, if the
M1/ d€q 0 fractional populationw,, is very near to the fixed point, we
fe,= o] de ETak add a weak laser pulse on this site, which means that the
n+1! n e.=0

control signal is opened up. For the sake of controlling the

Since the fixed poinkg is a saddle point, the matrik ~ chaos, the perturbation caused by the control laser should
should has the eigenvaluag and \s. The former satisfies place the system state’s next iterati®p ., in the stable
[\y/>1 and corresponds to motion along the unstable manimanifold Mg of xg. This requires that\x,,, have no com-
fold. Contrarily, the latter obeyb\. <1 and denotes motion ponent in the direction of the unstable manifdi], which
along the stable manifold. From, and \,, we can easily implies thatAxnu,l-hI:O; therefore, the control rule for the
obtain the relevant stable and unstable eigenveagirs, OGY is given ag41]
respectively, by solving the eigenequations . ; . ;
freu= N8 Fx8 = Nebs. (16) M Xorea =Na G+ ANy B0~ My - 96 = 0. (20)
The center manifold theorf42] correlates the stable mani- APPIYING €= 74, to Eq.(20), the strength of the control
fold Mg and unstable manifolt¥, to the stable and unstable Signal is obtained as

eigenvectors,, e,. Meanwhile, solving the equations
Aoh - Ay

(A= Dih-g}
In order to illustrate the processes of chaos control clearly,
we shall set a group of system parameters and boundary
hl.e,=hl-e=1 conditions and give a numerical simulation. Setting the pa-
s ’ rameters asy=-0.524 055,8=0.1, andJ?=0.25, and the
boundary conditions are given &s,,v,)=(0.5,0.5 we plot

hif, =\, hlf =xhl, (17) n= (21)

we can get the associated vectbfsand h!, which satisfy
the relations

T — T —

hy-&=hs-&,=0, (18)  the orbit from mapping11) in the plane of dimensionless

and have the form of quaptities(w,v) whi(.:h. are sh(_)wn as in Eig. 2. From Fig. 2
we find that the orbit is organized by a diffused point set but

hT = -+ D7t not a closgd. curve; the unstable .ﬁxed pq(wv;:,vF) is em-

UT IO+ D=+ DY bedded within the boundary of this chaotic attractor. Due to
the properties that the chaotic orbit can come through all
> 1 states in the chaotic attractor, this trajectory will reach the
(2awe = B[+ D 1=+ D] region which has arbitrarily small distance to the unstable
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2 ' ' ' chaotic distribution to a regular one for most of the lattice
sites. The anticipatively regular BEC maybe has some prac-
tical applications.

In the above discussions, we mainly investigated the spa-
tial properties of the BEC system. Of course, the time char-
acters of the system are also attractive; for instance, the tem-
poral stability of the target state is extremely important for
applicable purposes. However, the target orbits contain some
unstable periodic ones in general chaos control theories
[19-217. Due to the instability of the target orbit, the noises
, have significant effects on the control of chaos. In principle,
0 200 400 600 800 we can adjust the control signal constantly to suppress the

n noise-induced derivation from the stabilized state, whereas,

FIG. 3. lterates of dimensionless quantities from the map N order to strictly control the considered system both in time
(11) controlled by the OGY method withw,,v,)=(0.5,0.5. The  and space, we should control the spatiotemporal chaos as a
system parameters are takendas—0.524,8=0.1, andJ?=0.25. whole. Generally, for the spatiotemporal system, its dynami-

cal behaviors are described by the partial differential equa-
orbit for many times in the moving procession. Thus thistions because i_t possesses both time and spatial variablgs.
period-1 orbit can be selected as the target state. For such a partial d|ﬁerent|_al equation system, both analyti-

Employing the same parameters in Fig. 2 and the abov&d! treatments and numerlqal cal_culatlons are all the more
formula (12) we get the unstable fixed poinfwe,vr) complicated than the one-dimensional chaotic system. Con-

=(1.62,-1.53. The corresponding matrixes in Eq44) and sidering the present BEC system and using a method being
(15) ree'ld similar to that in [19], one can also form a

(m+1)-dimensional delay-coordinate vector in the time se-

[_ 0.5547} ries  XO=(¢nO] [t} [¢n(t=2T)], ... [¢n(t-mT)])
, with T being the time delay. Using the data of the probability
1 density [,(t)]> we can construct a chaotic orbit in tiien
+1)-dimensional reconstructed phase space. Generally, di-
mensions of the delay-coordinate vector can be chosen as the
dimensions of the variables in practical system. Here, the
o-dimensional delay-coordinate vector is considered for

X = =

2715 0.951
1803 -1 9

and the eigenvalues df, are easily produced as,=1.96,
As=-0.51. Therefore, from Eq$16) and(19), the transpose
of the eigenvectors and the associated orthogonal vectors

. T_r1_ T_r1_ T
gwen as eu-[%_o.glgz, &=[1 3'6791_2 and Ay he reason that the one spatial coordinate and one time vari-
=[1.198 0.326, h;=[-0.198 ~0.32§ respectively. Eventu- apje are involved in the system. Similar to REf9], setting

ally, according to the numerical result at the 498th iteration| y(t=T)|=const, one can obtain a series of cross points of

T_1_ H >
we have Ax,=[~0.002,0.02p with very small elements, the orbit X(t) with beeline|y,(t—T)|=const. Denoting the
which means the chaotic orbit is very near to the target state dinate of theth it on the beell : d
at this site. Hence, from the control rule of E@1) the coordinate of theth cross point on the beeline k(i) an

control parameter is calculated as=-0.035. Injecting an cOnsidering Eq(3), one can get a map of the dynamical

attractively “artificial” impurity with above strength on the Vvariable X(t) on the beeline. Therefore, after using the dis-
498th iteration, we can push the system onto the stable mangrete time, the dynamics of the system can be described by
fold of the target state which is demonstrated in Fig. 3.  the general form

In Fig. 3 we show that the mapping evolves 498 iterations
on a chaotic attractor before the control is activated. Then, Enli + 1) = F(€nea (i), €n(0), En-a (i), Pa(i)), (22
the evolution of the map rapidly converges to the fixed point
(Wg,ve). Hence, the system has a chaotic distribution in thevherei andn are the time and space series, respectively,
spatial positions from the first lattice site to the 498th site.denotes the map, anuj(i) represents the control signals.
After the 498th site, where the proper control is opened up, Equation(22) describes the coupling map latticéSML)
the distributions of the BECs are controlled to the stablemodel, which is the convenient spiflication of the real spa-
manifold near the unstable periodic orbit and then to thdiotemporal systempi3]. When spatiotemporal chaos arises,
fixed point associated with the target orbit rapidly. By therich motion states are involved in it. The target orbit with
constantv=wg=1.62 in Fig. 3 we mean that a fixed number time periodicity and spatial uniformity discussed above is
of atoms is localized at individual lattice site after the 498thalso governed by the CML model. For the CML model, dif-
site. Note that for a trap of 1 mm size and laser wavelengttierent methods, such as the feedback pinning technique
of the order of 10’ m, the number of optical lattice is about [20,44, delayed-feedback metho@5], and decentralized
10, which is much greater than 498. Particularly, we can setlelayed-feedback control approaf#6], have been devel-
the control at the position that is much less than the 498tloped to control the spatiotemporal chaos and push the system
lattice coordinate. So, importing an appropriate sharply foto the state that is order in space and periodic in time. There-
cused laser beam on the proper position of the lattice, ontore, similar control methods can be used for the present
can change the spatial structure of the condensates fromspatiotemporal chaotic system. A detail treatment for control
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of spatiotemporal chaos will be given elsewhere, because afn. Essentially, procession of controlling chaos is to obtain a
its importance and complexity. regularly spatial BEC population, through the properly of a
small modulation induced by an laser pulse to the structure

of the optical lattice, rather than through an adjustment to the

IV. CONCLUSIONS height or wavelength of the lattice. Suppression of chaos in

In summary, applying the tight-binding approximation we the former case is valid and in the latter case is at the ex-

have investigated the spatial structure of a weakly couple@€nSe ©f the distinct change of the system which is consid-

BEC array in an optical lattice. The chaotic features in theered_generally as invalid in the. th(_aory qf chaos cor{t_mﬂ.
It is well known that the periodic lattice systems in BEC

spatial distributions of the BEC for the stationary state were ; f ) . F |
revealed. This kind of chaotic property maybe has a destruONtain many fantastic properties. For example, guantum

tive role in the formation of the matter wave and is also notcOmPutation with BEC atoms in a Mott insulating state is an

expected in the application of the BEC. So, injecting a Con_lnteresting advancement in applications of the BEQ@. On

trol signal represented by &potential, which can be easily the other hand, chaos is associated_ with quantum entangle-
realized by a laser pulse in an experiment, we managed ent[48] and quantu'm error correctingd] whlch.are both .
control the chaos in the scheme of the well-known ocythe fundamental subjects in quantum computations. Thus, it

feedback control method. The results showed that, adding tHg valuable to apply or control the chaos in the system.
control signal with fit intensity on the apt site, the system can A
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