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The spatial structure of a Bose-Einstein condensate loaded into an optical lattice potential is investigated and
the spatially chaotic distributions of the condensates are revealed under the tight-binding approximation.
Adding a laser pulse on a proper site of the lattice and treating it as a control signal, control of the chaos in the
system is carried out by using the Ott-Grebogi-Yorker scheme. For an appropriate laser pulse, we can suppress
the chaos and push the system onto a stable manifold of a target orbit. After the control, a regular distribution,
which may be expected in experiments or practical applications, of the condensates in the coordinate space is
obtained.
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I. INTRODUCTION

Creation of the Bose-Einstein condensate(BEC) has pro-
vided a platform for investigating many important phenom-
ena in atomic physics, condensed-matter physics, and quan-
tum optics for the reason that this macroscopic quantum
system consisting of ultracold atoms is unique in precision
and flexibility for experimental control and manipulation
[1–5]. The dynamics of the system is described by a
Schrödinger equation combining with a nonlinear term,
which represents the many-body interactions, in the mean-
field approximation. This nonlinearity makes it possible to
bring chaos into the quantum system. The existence of BEC
chaos has been proved and the chaotic properties have also
been extensively researched in many previous works[6–14].
Naturally, chaos, which plays a destructive role in the regu-
larity of the system, will cause an instability of the conden-
sate wave function[15]. The onset of the instability can lead
to rapid proliferation of the thermal particles that has been
observed experimentally[16]. Chaos in a collapsing BEC
has also been discussed by Filhoet al. [6] and Satio and
Ueda[17]. Meanwhile, chaos is relevant to the phenomenon
of macroscopic quantum self-trapping in BECs[12] and as-
sists the instanton tunneling in the one-dimensional per-
turbed periodic potential[18]. Therefore, it is important to
investigate the chaotic characteristics in the BEC system. For
the purpose of applications control of chaos is anticipated in
practical investigations.

Chaos control has always been a widely attractive field in
recent decades since the pioneering work of Ott, Grebogi,
and Yorker(OGY) in 1990[19]. After the well-known OGY
method, some methods such as the numerous simplifications,
variations, and extensions have appeared and many efforts
have been put into controlling chaos[20–24]. Overwhelm-
ingly, these can be separated into two categories: feedback
control (active control) and nonfeedback(passive) control.
The general method for feedback control is to push a system
state onto a stable manifold of a target orbit—that is to say,

stabilizing the unstable target orbits embedded within a cha-
otic attractor.

In previous work we have investigated some chaotic char-
acteristics in the BEC systems with a double-well potential
[8,9] or a periodic one[10]. In the present paper, we consider
a BEC array loaded into a periodically optical lattice poten-
tial. In the framework of the tight-binding approximation, we
investigate the spatial structure of the condensates in the sta-
tionary state and find the chaotic features in the spatial dis-
tributions of the condensates. The presence of chaos will lead
to a randomness in the spatial structure of the BEC and even
a collapse of the matter wave. In order to control the chaos,
we add a laser pulse, which can be expressed in the form of
a d-function potential and treated as a control signal, on an
appropriate site of the optical lattice. Following the OGY
method, if the control term is appropriate(with a certain
strength or at a proper position) we can force the system to
the stable manifold near an unstable periodic orbit. Conse-
quently, a desired regular distribution of the BEC array can
be achieved from the site where the control laser is added on.

This paper is organized as follows: spatially chaotic dis-
tributions of the stationary-state BECs are described in Sec.
II. In Sec. III, the control of chaos is studied by using the
OGY feedback control method. Finally, a summary is given
in Sec. IV.

II. CHAOTIC DISTRIBUTIONS OF THE CONDENSATES
IN OPTICAL LATTICES

For an ultracold vapor of bosonic atoms trapped in a mag-
netic well, pure condensates will be created when they are
cooled to a temperature below the BEC threshold. After the
creation, the BEC is loaded into a one-dimensional(1D) op-
tical lattice potential which can be realized experimentally
by a far-detuned, retroreflected laser beam[25,26]. The cor-
responding BEC dynamics is described by a time-dependent
Gross-Pitaevskii equation(GPE) in the mean-field theory:

i"
]C

]t
= −

"2

2m
¹2C + fVext+ VL + g0uCu2gC, s1d

wherem is the atomic mass andg0=4p"2a/m denotes the
atom-atom interaction witha being thes-wave scattering
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length. The casea.0 represents a repulsive interatomic in-
teraction, anda,0 implies the attractive case. The order
parameterC is normalized to the total number of the con-
densate atoms,NT, VL=V0 cos2skxd is the optical lattice po-
tential, andVext denotes an external field superimposed on
the lattice. When the heights of the interwell barriers of the
optical lattice potential are much higher than the chemical
potential of the system, the tight-binding approximation is a
valid technique to account for the characters involved in the
GPE [26–29].

In the framework of the tight-binding approximation, the
optical lattices split the BEC into an array of many small
BECs such that one can decompose the order parameter
CsrW ,td as a sum of wave functions localized in each well of
the optical lattice potential:

CsrW,td = ÎNTo
n

cnstdFnsrWd, s2d

where dimensionless functioncnstd is thenth amplitude and
FnsrWd denotes the wave function localized in thenth lattice
site, which weakly overlapped in the barrier region with the
wave functionFn±1srWd in the neighbor sites. Inserting Eq.(2)
into the GPE yields the discrete nonlinear Schrödinger equa-
tion (DNLSE) [26–29]

i"
]cn

]t
= − Kscn−1 + cn+1d + sen + Uucnu2dcn. s3d

Here [26], K.−edrWfs"2/2mds¹W Fn·¹W Fn+1d+FnsVext

+VLdFn+1g is proportional to the microscopic tunneling rate
between the adjacent sites andU=g0NTedrWFn

4 indicates the
strength of the atom-atom interaction. In an experimentK is
controlled by the strength of the optical potential andU is
adjusted by using the technique of Feshbach resonance, re-
spectively. Meanwhile, the energy functional given byen

=edrWfs"2/2mds¹W Fnd2+sVext+VLdFn
2g has a different form for

different external fieldsVext. Note that the periodicity of the
lattice leads the profile ofFn to the same one in any lattice
site and, due to the tight binding, theFn is localized in the
nth well approximately. Therefore, the strength of the two-
body interactionU is a constant which is independent ofn.
On the other hand, the tunneling rateK also was treated as a
constant approximately in Ref.[26], because of the high lo-
calizations of the tight-binding states. However, the on-site
energyen should be a function ofn, sinceVext depends on the
spatial coordinates labeled byn and there is no overlap inte-
gral is involved in the expression of the on-site energy. For
instance, it is proportional ton2 for a harmonic confinement
potential superimposed on the lattice potential in the experi-
ment [26]. In Ref. [25], a coherent output of the matter
waves was created by a vertical optical lattice which pro-
videsen~n due to the gravity gradient.

In the present work, the external potential is taken as the
form of a delta functionVext=hdsx−xn8d with h being the
potential strength andxn8 a fixed lattice site. As an “artificial”
single impurity, such delta-function potential has been real-
ized by a sharply focused laser beam in the experiment[30].
In this case, we obtain the integrationsedrWFnVextFn+1=0 and

edrWVextFn
2=hdn,n8, because of the normalization condition

edrWFnFm.dmn. So the tunneling rateK is indeed a constant
for the periodic spatial distributionFnsrWd and the on-site en-
ergyen consists of two terms: thehdn,n8 and a constant. After
absorbing the constant into the chemical potential(e.g., the
latter E), the on-site energy reads[28,31] en=hdn,n8 with h
.0sh,0d corresponding to the repulsive(attractive) cases
and n8 being the given lattice site on which the laser beam
acts.

The DNLSE (3) has been studied extensively
[26–29,32–37], although its dynamical behaviors are very
complicated. For simplicity, we shall consider the case that
the system is in the stationary state such that the amplitude
cn at the nth lattice site can be written as[33,38] cn
=xn expf−iEt /"g with E being an arbitrary constant andxn a
complex function ofn. Substituting suchcn into Eq. (2),
parentally,CsrW ,td takes the form of the stationary solution,
whereE represents the chemical potential andxn is the di-
mensionless expansion coefficient associated with the basic
vector FnsrWd. For such time-periodic solutions the spatial
properties of the system can be easily studied, becauseuxnu2
characterizes the fractional populationNn/NT with Nn being
the number of particles at thenth site. Employing the above
form of cn, Eq. (3) becomes

Exn = − Ksxn+1 + xn−1d + sen + Uuxnu2dxn s4d

immediately. Rewriting the complex function in the expo-
nential formxn= In expfiung and inserting it into Eq.(4) we
obtain the coupled equations for the fractional population
amplitudeIn of the BEC at thenth site and the corresponding
phase angleun as

EIn cosun = − KsIn+1 cosun+1 + In−1un−1d

+ sen + UIn
2dIn cosun, s5d

EIn sinun = − KsIn+1 sinun+1 + In−1 sinun−1d

+ sen + UIn
2dIn sinun. s6d

After some simple calculations Eqs.(5) and(6) are changed
to

In+1 cossDun+1d + In−1 cossDund =
1

K
sen + UIn

2 − EdIn, s7d

In+1 sinsDun+1d = In−1 sinsDund, s8d

with Dun=un−un−1. From Eq.(8) we observe that it defines a
spatial evolution constant by

J ; InIn−1 sinsDund, s9d

which is determined by the boundary valuesI0, u0 and near
boundary valuesI1, u1 of the system. Following the studies
in [39], introducing two newly dimensionless variables

wn = In
2, vn = J cotsDund, s10d

and combining Eqs.(7) with (9), we can yield a reduced
two-dimensional map as
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wn+1 =
1

wn
svn+1

2 + J2d,

vn+1 = − vn +
1

K
sen + Uwn − Edwn. s11d

From the definitions of the new variables, we findwn is just
the fractional population at thenth site. Whenen=0, the map
(11) has been researched by Wan and Soukoulis[32] for the
electronic response in a nonlinear lattice where the subindi-
ces n represent the time series contrasting with the spatial
positions indicated here.

From the map(11) we can observe that when the inter-
atomic interaction strengthU is large enough the nonlinear
effect will become dominant and the corresponding chaotic
phenomenon will emerge. Consequently, the population of
the BEC array becomes random in the spatial distribution.
Furthermore, we can change the tunneling rateK by adjust-
ing the height of the lattice and can control the two-body
interaction intensityU by using Feshbach resonance in ex-
periments. For certain boundary values ofI0, u0 and the near-
boundary valuesI1, u1, the spatial evolution constantJ and
the near-boundary valuesw1, v1 can also be determined as
J; I1I0 sinsu1−u0d, w1= I1

2, and v1=J cotsu1−u0d. Thus,
given the tunneling rateK, nonlinear interaction strengthU,
chemical potentialE, energy functionalen (which is deter-
mined by the externally added laser pulse and denotes the
control signal in the next section), evolution constantJ, and
near-boundary valuesw1, v1, a series of BEC fractional
populationswn andvn for n=2,3, . . . can bederived from Eq.
(11). Consequently, the fractional populations of the BEC on
every sites are acquired. According to these values of the
fractional populationwn we can directly gain insight into the
spatial structure of the condensates in the optical lattices.
Many interesting properties of the electrons in the nonlinear
lattice have been studied through the map(11) with en=0 in
Ref. [32]. Certainly, there have similar properties for the con-
sidered BEC system described by the map(11). Here, we
shall pay attention to the chaotic features implied in this
map, which is correlated to the spatially chaotic distributions
of the BEC. The orbits generated by the mapping on the
planesw,vd can be either bounded or divergent for different
parameter sets. The bounded orbits can further organize into
a hierarchy orbits with different period due to the general
theorem of Poincaré and Birkhoff and the KAM theorem
[40]. Then, it is possible to find the chaotic trajectory near
the hierarchy point[32].

Taking a set of system parameters as the tunneling rate
K=0.5, atom-atom interaction strengthU=0.9, chemical po-
tential E=0.8 [they are all in unit of atomic recoil energy
Er ="2k2/ s2md], and spatial evolution constantJ=0.05 asso-
ciated with a certain boundary conditions and supposing the
laser pulse is turn off(i.e., en=0), we plot 20 orbits in the
plane of dimensionless quantitiessw,vd from mapping(11)
with different initial iterations of sw1,v1d=s0.1+0.005i ,
−0.1+0.005id, where i takes integer numbers from 1 to 20
and shown as in Fig. 1. In this figure, it is seen that around
the fixed point there exist some invariant curves[32] and a

period-5 elliptic or hyperbolic orbit; the surrounding chaotic
orbits are also demonstrated. When the interatomic interac-
tion is attractivesU,0d, a similar diagram for the orbits can
also be achieved. Thereby, for certain system parameters and
boundary conditions, the BEC system possesses a spatially
chaotic distribution. This chaotic characteristic results in the
stochasticity in the spatial structure of the BEC and destroys
the regularity of the system. However, the stable periodic
states are expected generally in experiments and practical
applications. Due to the difficulty in precisely determining
the boundary conditions of the BEC in experiments, we can-
not acquire the desired periodic orbit through selecting the
boundary conditions. So it is necessary to control the system
from the chaotic state to the regular target state by using an
effective control method. In the next section, we shall try to
carry out this control.

III. CONTROLLING CHAOS IN THE SYSTEM

In the above discussion, the laser pulse has not been
considered—i.e.,en=0. Obviously, in order to control the
chaos, some control signal should be injected into the sys-
tem. We shall take the laser pulse into account and find that
it can be treated as the control signal for the BEC system.
Using this externally imported field and selecting the un-
stable fixed point(period-1 orbit) of the mapping(11) as the
target state, we shall control the chaos by stabilizing the
system to the stable manifold of the objective state in the
scheme of the OGY feedback control method. Following the
OGY method[19,41] and starting from the mapping(11)
with wn+1=wn and vn+1=vn, we can obtain the fixed points
governed by the coupled equationsw=Îv2+J2 and v
=Uw2/2K−Ew/2K. After eliminating the coupling they read
as

a2wF
4 − 2abwF

3 + sb2 − 1dwF
2 + J2 = 0,

asvF
2 + J2d − bÎvF

2 + J2 − vF = 0, s12d

with a=U /2K and b=E/2K. We suppose that one of the
fixed pointsswF ,vFd is a saddle point, which is embedded
within a chaotic state that the system lies in. Our task is to

FIG. 1. Plot of the phase orbits with respect to dimensionless
variablesw, v. The dotted curves consisting of the 20 orbits for
sw1,v1d=s0.1+0.005i ,−0.1+0.005id, i =1,2, . . . ,20. Theinvariant
curves, period-5 orbit, and the chaotic orbits surrounded them are
illustrated. The two solid lines represent the symmetry lines from
the equationsw=Îv2+J2 and v=Uw2/2K−Ew/2K, respectively,
which give a fixed point as their cross point.
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stabilize the system to the stable manifold through the saddle
point. Defining a transpose ofxn asxn

T=fwn vng and consid-
ering the dynamics nearby the point, we have[19,41]

Dxn+1 = fxDxn, Dxn = xn − xF, s13d

with

xF = FwF

vF
G .

Here, fx is a 232 Jacobian matrix of the map(11), which
determines the motive flow of the system at this fixed point
and is given as

fx = U ]f

]xn
U

xn=xF

= FsawF − bds2awF − bd + 1 − sawF − bd
2awF − b − 1

G , s14d

where f denotes the mapping. When the control signal is
turned on, a shift to the unstable fixed point will be induced
and is characterized by a linear response matrix as[41]

g = usI − fxd−1fen
uxn

= xF = F1/s2awF − bd
1

G , s15d

with

fen
= UF]wn+1/]en

]vn+1/]en
GU

en=0
= F 0

1/K
G .

Since the fixed pointxF is a saddle point, the matrixfx
should has the eigenvalueslu and ls. The former satisfies
uluu.1 and corresponds to motion along the unstable mani-
fold. Contrarily, the latter obeysulsu,1 and denotes motion
along the stable manifold. Fromls and lu, we can easily
obtain the relevant stable and unstable eigenvectorses,eu,
respectively, by solving the eigenequations

fxeu = lueu, fxes = lses. s16d

The center manifold theory[42] correlates the stable mani-
fold Ms and unstable manifoldMu to the stable and unstable
eigenvectorses,eu. Meanwhile, solving the equations

hu
Tfx = luhu

T, hs
Tfx = lshs

T, s17d

we can get the associated vectorshu
T and hs

T, which satisfy
the relations

hu
T ·eu = hs

T ·es = 1,

hu
T ·es = hs

T ·eu = 0, s18d

and have the form of

hu
T = F − sls + 1d−1

fslu + 1d−1 − sls + 1d−1g

3
1

s2awF − bdfslu + 1d−1 − sls + 1d−1gG ,

hs
T = F − slu + 1d−1

fsls + 1d−1 − slu + 1d−1g

3
1

s2awF − bdfsls + 1d−1 − slu + 1d−1gG . s19d

Supposing the spatial distributions of the condensates are
chaotic when the control laser is turned off and the corre-
spondingly chaotic attractor of the map(11) involves the
unstable period-1 orbit. Meanwhile, on thesn8dth site, if the
fractional populationwn8 is very near to the fixed point, we
add a weak laser pulse on this site, which means that the
control signal is opened up. For the sake of controlling the
chaos, the perturbation caused by the control laser should
place the system state’s next iterationxn8+1 in the stable
manifold Ms of xF. This requires thatDxn8+1 have no com-
ponent in the direction of the unstable manifoldMu which
implies thatDxn8+1·hu

T=0; therefore, the control rule for the
OGY is given as[41]

hu
T ·xn8+1 = hu

T ·gen8 + lhu
T · Dxn8 − luhu

T ·gen8 = 0. s20d

Applying en=hdn,n8 to Eq. (20), the strength of the control
signal is obtained as

h =
luhu

T · Dxn8

slu − 1dhhu
T ·gj

. s21d

In order to illustrate the processes of chaos control clearly,
we shall set a group of system parameters and boundary
conditions and give a numerical simulation. Setting the pa-
rameters asa=−0.524 055,b=0.1, andJ2=0.25, and the
boundary conditions are given assw1,v1d=s0.5,0.5d we plot
the orbit from mapping(11) in the plane of dimensionless
quantitiessw,vd which are shown as in Fig. 2. From Fig. 2
we find that the orbit is organized by a diffused point set but
not a closed curve; the unstable fixed pointswF ,vFd is em-
bedded within the boundary of this chaotic attractor. Due to
the properties that the chaotic orbit can come through all
states in the chaotic attractor, this trajectory will reach the
region which has arbitrarily small distance to the unstable

FIG. 2. Plot of the chaotic attractor from the map(11) in the
plane of dimensionless quantitiessw,vd with a=−0.524 055,b
=0.1, andJ2=0.25. The target orbit of the unstable fixed point
swF ,vFd=s1.62,−1.53d is involved in it.
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orbit for many times in the moving procession. Thus this
period-1 orbit can be selected as the target state.

Employing the same parameters in Fig. 2 and the above
formula (12) we get the unstable fixed pointswF ,vFd
=s1.62,−1.53d. The corresponding matrixes in Eqs.(14) and
(15) read

fx = F 2.715 0.951

− 1.803 − 1
G, g = F− 0.5547

1
G ,

and the eigenvalues offx are easily produced aslu=1.96,
ls=−0.51. Therefore, from Eqs.(16) and(19), the transpose
of the eigenvectors and the associated orthogonal vectors are
given as eu

T=f1−0.9197g, es
T=f1−3.67912g and hu

T

=f1.198 0.326g, hs
T=f−0.198 −0.326g, respectively. Eventu-

ally, according to the numerical result at the 498th iteration
we have Dxn

T=f−0.002,0.025g with very small elements,
which means the chaotic orbit is very near to the target state
at this site. Hence, from the control rule of Eq.(21) the
control parameter is calculated ash=−0.035. Injecting an
attractively “artificial” impurity with above strength on the
498th iteration, we can push the system onto the stable mani-
fold of the target state which is demonstrated in Fig. 3.

In Fig. 3 we show that the mapping evolves 498 iterations
on a chaotic attractor before the control is activated. Then,
the evolution of the map rapidly converges to the fixed point
swF ,vFd. Hence, the system has a chaotic distribution in the
spatial positions from the first lattice site to the 498th site.
After the 498th site, where the proper control is opened up,
the distributions of the BECs are controlled to the stable
manifold near the unstable periodic orbit and then to the
fixed point associated with the target orbit rapidly. By the
constantw=wF=1.62 in Fig. 3 we mean that a fixed number
of atoms is localized at individual lattice site after the 498th
site. Note that for a trap of 1 mm size and laser wavelength
of the order of 10−7 m, the number of optical lattice is about
104, which is much greater than 498. Particularly, we can set
the control at the position that is much less than the 498th
lattice coordinate. So, importing an appropriate sharply fo-
cused laser beam on the proper position of the lattice, one
can change the spatial structure of the condensates from a

chaotic distribution to a regular one for most of the lattice
sites. The anticipatively regular BEC maybe has some prac-
tical applications.

In the above discussions, we mainly investigated the spa-
tial properties of the BEC system. Of course, the time char-
acters of the system are also attractive; for instance, the tem-
poral stability of the target state is extremely important for
applicable purposes. However, the target orbits contain some
unstable periodic ones in general chaos control theories
[19–21]. Due to the instability of the target orbit, the noises
have significant effects on the control of chaos. In principle,
we can adjust the control signal constantly to suppress the
noise-induced derivation from the stabilized state, whereas,
in order to strictly control the considered system both in time
and space, we should control the spatiotemporal chaos as a
whole. Generally, for the spatiotemporal system, its dynami-
cal behaviors are described by the partial differential equa-
tions because it possesses both time and spatial variables.
For such a partial differential equation system, both analyti-
cal treatments and numerical calculations are all the more
complicated than the one-dimensional chaotic system. Con-
sidering the present BEC system and using a method being
similar to that in [19], one can also form a
sm+1d-dimensional delay-coordinate vector in the time se-

ries XW std=(ucnstdu , ucnst−Tdu , ucnst−2Tdu , . . . ,ucnst−mTdu)
with T being the time delay. Using the data of the probability
density ucnstdu2 we can construct a chaotic orbit in thesm
+1d-dimensional reconstructed phase space. Generally, di-
mensions of the delay-coordinate vector can be chosen as the
dimensions of the variables in practical system. Here, the
two-dimensional delay-coordinate vector is considered for
the reason that the one spatial coordinate and one time vari-
able are involved in the system. Similar to Ref.[19], setting
ucnst−Tdu=const, one can obtain a series of cross points of

the orbit XW std with beeline ucnst−Tdu=const. Denoting the
coordinate of theith cross point on the beeline byjnsid and
considering Eq.(3), one can get a map of the dynamical

variableXW std on the beeline. Therefore, after using the dis-
crete time, the dynamics of the system can be described by
the general form

jnsi + 1d = F„jn+1sid,jnsid,jn−1sid,pnsid…, s22d

wherei andn are the time and space series, respectively,F
denotes the map, andpnsid represents the control signals.

Equation(22) describes the coupling map lattices(CML)
model, which is the convenient spiflication of the real spa-
tiotemporal systems[43]. When spatiotemporal chaos arises,
rich motion states are involved in it. The target orbit with
time periodicity and spatial uniformity discussed above is
also governed by the CML model. For the CML model, dif-
ferent methods, such as the feedback pinning technique
[20,44], delayed-feedback method[45], and decentralized
delayed-feedback control approach[46], have been devel-
oped to control the spatiotemporal chaos and push the system
to the state that is order in space and periodic in time. There-
fore, similar control methods can be used for the present
spatiotemporal chaotic system. A detail treatment for control

FIG. 3. Iterates of dimensionless quantitieswn from the map
(11) controlled by the OGY method withsw1,v1d=s0.5,0.5d. The
system parameters are taken asa=−0.524,b=0.1, andJ2=0.25.
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of spatiotemporal chaos will be given elsewhere, because of
its importance and complexity.

IV. CONCLUSIONS

In summary, applying the tight-binding approximation we
have investigated the spatial structure of a weakly coupled
BEC array in an optical lattice. The chaotic features in the
spatial distributions of the BEC for the stationary state were
revealed. This kind of chaotic property maybe has a destruc-
tive role in the formation of the matter wave and is also not
expected in the application of the BEC. So, injecting a con-
trol signal represented by ad potential, which can be easily
realized by a laser pulse in an experiment, we managed to
control the chaos in the scheme of the well-known OGY
feedback control method. The results showed that, adding the
control signal with fit intensity on the apt site, the system can
be pushed onto the stable manifold of the target orbit. This
control enables us to obtain an expected distribution in the
spatial positions from the site that the control laser is added

on. Essentially, procession of controlling chaos is to obtain a
regularly spatial BEC population, through the properly of a
small modulation induced by an laser pulse to the structure
of the optical lattice, rather than through an adjustment to the
height or wavelength of the lattice. Suppression of chaos in
the former case is valid and in the latter case is at the ex-
pense of the distinct change of the system which is consid-
ered generally as invalid in the theory of chaos control[41].

It is well known that the periodic lattice systems in BEC
contain many fantastic properties. For example, quantum
computation with BEC atoms in a Mott insulating state is an
interesting advancement in applications of the BEC[47]. On
the other hand, chaos is associated with quantum entangle-
ment[48] and quantum error correcting[49] which are both
the fundamental subjects in quantum computations. Thus, it
is valuable to apply or control the chaos in the system.
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